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Abstract

We present an unconditionally stable second order accurate projection method for the incompressible Navier–Stokes
equations on non-graded adaptive Cartesian grids. We employ quadtree and octree data structures as an efficient means
to represent the grid. We use the supra-convergent Poisson solver of [C.-H. Min, F. Gibou, H. Ceniceros, A supra-con-
vergent finite difference scheme for the variable coefficient Poisson equation on fully adaptive grids, CAM report 05-29,
J. Comput. Phys. (in press)], a second order accurate semi-Lagrangian method to update the momentum equation, an
unconditionally stable backward difference scheme to treat the diffusion term and a new method that guarantees the sta-
bility of the projection step on highly non-graded grids. We sample all the variables at the grid nodes, producing a scheme
that is straightforward to implement. We propose two and three-dimensional examples to demonstrate second order accu-
racy for the velocity field and the divergence free condition in the L1 and L1 norms.
� 2006 Elsevier Inc. All rights reserved.
1. Introduction

The incompressible Navier–Stokes equations describe the motion of fluid flows and are therefore used in
countless applications in science and engineering. In non-dimensional form these equations read
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where p is the pressure, F is the sum of the external forces and l is the viscosity coefficient. X represents the
domain in which the velocity field U is to be found and oX denotes the boundary of the domain, where the
velocity field can be prescribed. In this paper, we consider the case where U Æ n = 0 on oX. These equations
lack an evolution equation for pressure, which thus only plays a role in ensuring that the velocity field is diver-
gence free. As a consequence, most numerical methods in the primitive variables are fractional methods, i.e.
they first solve the momentum equation ignoring the effects of pressure, and then project the velocity onto the
divergence free vector space. Starting with the seminal work of Chorin [8], several projection methods have
been introduced, see e.g. the work of Kim and Moin [17], Kan [16], Bell et al. [3] and the references therein.
The MAC grid configuration [14] used in finite volume methods, where the pressure is stored at the cells’ cen-
ter and where the velocity components are stored at their respective cells’ faces, is often the preferred arrange-
ment. This is mainly due to the fact that it produces methods that offer a straightforward mechanism to
enforce discretely the incompressibility condition $ Æ u = 0. However, other arrangements have been shown
to produce high order accurate schemes for the velocity field, without enforcing the incompressibility condi-
tion at the discrete level (see e.g. the work of E et al. [10], Almgren et al. [2], the review by Brown et al. [6] and
the references therein).

Physical phenomena have differences in length scales and numerical approximations on uniform grids are in
such cases extremely inefficient in terms of C.P.U. and memory requirement. This stems from the fact that
only a small fraction of the domain needs high grid resolution to correctly approximate the solution, while
other parts of the domain can produce accurate solutions on coarser grids (for example in regions where
the solution experiences smooth variations). As a consequence adaptive mesh refinement strategies, starting
with the work of Berger and Oliger [5] for compressible flows, have been proposed in order to concentrate
the computational effort where it is most needed. In the original work of Berger et al. [5,4], a fine Cartesian
grid is hierarchically embedded into a coarser grid. Almgren et al. [1] then introduced a projection method for
the variable density incompressible Navier–Stokes equations on nested grids. Sussman et al. extended this
method to two-phase flows [30]. Within this block structured grid approach, a multigrid approach was used
to efficiently solve the Poisson equation. The methods on quadtrees/octrees presented in [21,20,22,24] build
one linear system of equations that was solved with standard iterative linear solvers [25].

One of the main difficulties in solving the Navier–Stokes equations on irregular grids is in solving the Poisson
equation associated with the incompressibility condition. Rather recently, Popinet [24] introduced a Navier–
Stokes solver using an octree data structure. In this work, the discretization of the Poisson equation at one cell’s
center involves cells that are not necessarily adjacent to it. As a consequence, a non-symmetric linear system of
equations was obtained and graded octrees only were considered in order to ease the implementation. In this
case the linear system was efficiently solved using a multigrid method. Later, Losasso et al. [21] introduced a
symmetric discretization of the Poisson equation in the context of free surface flows. In this case, the discret-
ization at one cell’s center only involves adjacent cells, therefore producing a symmetric linear system of equa-
tions, which is straightforward to solve with a standard preconditioned conjugate gradient method. Moreover,
this method is straightforward to implement and does not require any constraint on the grid. This approach
produces first order accurate solutions in the case of a non-graded adaptive mesh and is found to be second
order accurate in the case of a graded mesh. In this case, the pressure fluxes defined at the faces are the same
for a large cell and its adjacent smaller cells. Using ideas introduced in [19], Losasso et al. then extended this
method to second order accuracy. In [22], Min et al. introduced a second order accurate method to solve the
Poisson equation on non-graded adaptive grids as well. A hallmark of this approach is that the solution’s gra-
dients are found to second order accuracy as well. In this case, the linear system is non-symmetric but is proven
to be diagonally dominant. In this paper, we propose a second order accurate finite difference Navier–Stokes
solver on non-graded adaptive grids, making use of the Poisson solver introduced in [22].

2. Spatial discretization

The physical domain in two (resp. three) spatial dimensions is discretized into squares (resp. cubes), and we
use a standard quadtree (resp. octree) data structure to represent this partitioning. For example, consider the
case depicted in Fig. 1 in the case of two spatial dimensions: The root of the tree is associated with the entire
domain that is then split into four cells of equal sizes, called the children of the root. The discretization



Fig. 1. Discretization of a two-dimensional domain (left) and its quadtree representation (right). The entire domain corresponds to the
root of the tree (level 0). Then each cell can be recursively subdivided further to four children. In this example, this tree is ungraded, since
the difference of level between cells exceeds one.
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proceeds recursively, i.e. each cell can be in turn split into four children until the desired level of detail is
achieved. In three spatial dimensions, the domain (root) is split in eight cubes (children) and each cell can
be recursively split in the same manner. We refer the interested reader to the books of Samet [27,26] for more
details on quadtree/octree data structures.

The level of a cell is set to be zero if it is associated with the root and is incremented by one for each new
generation of children. A tree in which the difference of level between adjacent cells is at most one is called a
graded tree. Meshes associated with graded trees are often used in the case of finite element methods in order
to produce procedures that are easier to implement. In [24], Popinet also uses a graded grid to simplify the
finite difference formulas associated with his discretizations. As a consequence, such methods may introduce
extra grid cells in regions where they are not necessarily needed, consuming some computational resources
that cannot be spent elsewhere, eventually limiting the highest level of detail that can be achieved. In fact,
Moore [23] demonstrates that the cost of transforming an arbitrary quadtree into a graded quadtree could
involve 8 times as many grid nodes in the worst case. Weiser [31] proposed a rough estimate for the three-
dimensional case and concluded that as much as 71 times as many grid nodes could be needed for balancing
octrees in the worst case. Even more important than the amount of grid cells necessary, the ease of implemen-
tation is a factor to consider. In this work, we do not impose any constraint on the difference of level between
two adjacent cells in the proposed method, allowing for a non-graded adaptive mesh generation.

3. Numerical methods

In this section, we present an unconditionally stable second order accurate projection method for the
incompressible Navier–Stokes equations. All the variables are stored at the nodes, producing a scheme that
is straightforward to implement. We use the quadtree and octree data structures described in Section 2 and
we allow for non-graded adaptive grids, hence removing the difficulties associated with grid generations.
We use the supra-convergent Poisson solver of Min et al. [22], a second order accurate semi-Lagrangian
method to update the momentum equation and an unconditionally stable backward difference scheme to treat
the diffusion term.

3.1. Second order accurate semi-lagrangian method

Semi-Lagrangian schemes are extensions of the Courant–Isaacson–Rees [9] method for hyperbolic equa-
tions. They are unconditionally stable and therefore allow for large time steps, which is a particularly desirable
feature in an adaptive setting since for standard explicit schemes the time step restriction imposed by the CFL
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condition is proportional to the smallest grid cell. The general idea behind semi-Lagrangian methods is to recon-
struct the solution by integrating numerically the equation along characteristic curves, starting from any grid
point xi and tracing back the departure point xd in the upwind direction. Interpolation formulas are then used
to recover the value of the solution at such points. Consider for example the linear advection equation
Fig. 2
interpo
interpo
/t þ U � r/ ¼ 0;
where U is an externally generated velocity field (i.e. does not depend on /). Then /n+1(xi) = /n(xd), where xi

is any grid point and xd is the corresponding departure point from which the characteristic curve originates
from. In this work, we use the following second order explicit mid-point rule for locating the departure point,
as in [32]
x̂ ¼ xnþ1 � Dt
2
� Unðxnþ1Þ;

xn
d ¼ xnþ1 � Dt � Unþ1

2ðx̂Þ;
where we define the velocity at the mid time step tn+1/2 as a linear combination of the velocities at the two
previous time steps tn and tn�1, i.e. U nþ1

2 ¼ 3
2
Un � 1

2
Un�1.

Since x̂ is not guaranteed to be on a grid node, a procedure must be provided to interpolate the value of
U nþ1

2ðx̂Þ from the values of Un+1/2 defined at the nodes. Likewise, /nðxn
dÞ must be interpolated from the values

of /n defined at the nodes. Piecewise multilinear interpolation schemes on non-uniform grids are often used in
conjunction with semi-Lagrangian methods (see e.g. [21,28]). In this work, we use a quadratic Hermite inter-
polation [18], which is constructed from the solution’s values at nine distinct nodes in two spatial dimensions
(27 in three spatial dimensions). Since the local structure of a non-uniform cell is arbitrary, we use the four
children of the parent cell to select a uniform grid of 3 · 3 nodes in two spatial dimensions (3 · 3 · 3 in three
spatial dimensions) as illustrated in Fig. 2. Similarly, the discretization of the momentum equation in the pro-
jection method of Section 3.6 requires the definition of xn�1

d , which is given by
x̂ ¼ xnþ1 � Dt � Unðxnþ1Þ;
xn�1

d ¼ xnþ1 � 2Dt � U nðx̂Þ:
3.2. Basic finite differences on non-uniform Cartesian grids

We derived in Min et al. formulas to obtain second order accurate discretizations for the first order deriv-
atives and first order accurate discretizations for the second order derivatives on a non-uniform mesh. In order
to discretize the derivatives in one direction, these formulas use the derivatives in the transversal directions to
. Quadratic interpolation in quadtree: the shaded cell is the smallest cell containing the location x where the data must be
lated at. The parent cell of the shaded cell has a 3 · 3 locally uniform grid that enables a straightforward quadratic Hermite
lation.
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increase the accuracy. Here, we recall the formulas and refer the interested reader to [22] for more details in the
derivation.

3.2.1. Two spatial dimensions
Consider a node v0 in a two-dimensional non-uniform grid as depicted in Fig. 3. Denoting fi = f(vi), the

discretizations for the first and second order derivatives in the x direction are given by
Fig. 3.
we defi
Dxf ðv0Þ ¼ eDxf ðv0Þ �
s1s5s6

2s4ðs1 þ s4Þ
Dyyf ðv0Þ
and
Dxxf ðv0Þ ¼ eDxxf ðv0Þ �
s5s6

s4ðs1 þ s4Þ
Dyyf ðv0Þ;
where eDx and eDxx are given by the standard finite difference approximations for the first and second order
derivatives
eDxf ðv0Þ ¼
f4 � f0

s4

s1

s1 þ s4

þ f0 � f1

s1

s4

s1 þ s4
and
eDxxf ðv0Þ ¼
f4 � f0

s4

2

s1 þ s4

� f0 � f1

s1

2

s1 þ s4

;

where f(v4) is defined by linear average between f(v5) and f(v6). The y-direction is treated similarly.

3.2.2. Three spatial dimensions

Consider a node v0 in a three-dimensional non-uniform grid as depicted in Fig. 4. The discretizations for the
first and second order derivatives are given by
Dxf ðv0Þ ¼ eDxf ðv0Þ þ
s7s8

2

s1

s4ðs1 þ s4Þ
Dzzf ðv0Þ;

Dyf ðv0Þ ¼ eDyf ðv0Þ þ
s10s11

2

s2

s5ðs2 þ s5Þ
Dzzf ðv0Þ þ

s9s12

2

s2

s5ðs2 þ s5Þ
Dxxf ðv0Þ;

Dxxf ðv0Þ ¼ eDxxf ðv0Þ �
s7s8

s4ðs1 þ s4Þ
Dzzf ðv0Þ;

Dyyf ðv0Þ ¼ eDyyf ðv0Þ �
s10s11

s5ðs2 þ s5Þ
Dzzf ðv0Þ �

s9s12

s5ðs2 þ s5Þ
Dxxf ðv0Þ;
Local structure around a node v0 in a quadtree mesh: at most one node in the two Cartesian directions might not exist. In this case,
ne a ghost node (here v4) to be used in the discretizations.



Fig. 4. Neighboring vertices of a vertex three spatial dimensions.
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where eDx, eDy , eDxx and eDyy are given by
eDxf ðv0Þ ¼
f4 � f0

s4

s1

s1 þ s4

þ f0 � f1

s1

s4

s1 þ s4

;

eDyf ðv0Þ ¼
f2 � f0

s2

s5

s2 þ s5

þ f0 � f5

s5

s2

s2 þ s5

;

eDxxf ðv0Þ ¼
f4 � f0

s4

2

s1 þ s4

� f0 � f1

s1

2

s1 þ s4
and
eDyyf ðv0Þ ¼
f2 � f0

s2

2

s2 þ s5

� f0 � f5

s5

2

s2 þ s5

;

with
f ðv4Þ ¼
s7f8 þ s8f7

s7 þ s8
and
f ðv5Þ ¼
s11s12f11 þ s11s9f12 þ s10s12f9 þ s10s9f10

ðs10 þ s11Þðs9 þ s12Þ
:
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3.3. Interpolation procedures

Some reserve must be provided to define data anywhere in a cell, for example in order to use semi-Lagrang-
ian methods (see Section 3.1). As pointed out in Strain [29], the most natural choice of interpolation in quad-
tree (resp. octree) data structures is the piecewise bilinear (resp. trilinear) interpolation: Consider a cell C with
dimensions [0,1]2, the bilinear interpolation at a point x 2 C using the values at the nodes reads
/ðx; yÞ ¼ /ð0; 0Þð1� xÞð1� yÞ
þ /ð0; 1Þð1� xÞð yÞ
þ /ð1; 0Þð xÞð1� yÞ
þ /ð1; 1Þð xÞð yÞ:

ð1Þ
Quadratic interpolation can also easily be constructed using the data from the parent cell: since the parent cell
of any current cell of a quadtree (resp. octree) owns 2 · 2 children cells (resp. 2 · 2 · 2) and 3 · 3 nodes (resp.
3 · 3 · 3), one can defined the Hermite quadratic interpolation on the parent cell. For example in the case of a
cell [�1,1]2 in a quadtree, we can define the Hermite interpolation as
/ðx; yÞ ¼ /ð�1;�1Þ xðx� 1Þ
2

yðy � 1Þ
2

þ /ð0;�1Þðx2 � 1Þ yðy � 1Þ
2

þ /ð1;�1Þ xðxþ 1Þ
2

yðy � 1Þ
2

þ /ð�1; 0Þ xðx� 1Þ
2

ðy2 � 1Þ þ /ð0; 0Þðx2 � 1Þðy2 � 1Þ þ /ð1; 0Þ xðxþ 1Þ
2

ðy2 � 1Þ

þ /ð�1; 1Þ xðx� 1Þ
2

yðy þ 1Þ
2

þ /ð0; 1Þðx2 � 1Þ yðy þ 1Þ
2

þ /ð1; 1Þ xðxþ 1Þ
2

yðy þ 1Þ
2

:

However, this interpolation procedure is ill-advised in the case of high Reynolds number flows since such flows
present rapid change in velocity and Hermite interpolations overshoot the data. We therefore prefer to define a
quadratic interpolation by correcting Eq. (1) using second order derivatives. For a cell [0, 1]2, we have
/ðx; yÞ ¼ /ð0; 0Þð1� xÞð1� yÞ
þ /ð0; 1Þð1� xÞð yÞ
þ /ð1; 0Þð xÞð1� yÞ

þ /ð1; 1Þð xÞð yÞ � /xx
xð1� xÞ

2
� /yy

yð1� yÞ
2

;

ð2Þ
where we define
/xx ¼ min
v2verticesðCÞ

ðjD0
xx/vjÞ;

/yy ¼ min
v2verticesðCÞ

ðjD0
yy/vjÞ:

ð3Þ
3.4. Hodge decomposition

Projection methods are based on the Hodge decomposition that states that a vector field U* on a domain X
with U* Æ n = 0 on the domain’s boundary oX can be uniquely decomposed into the sum of a divergence-free
vector field U and a gradient field $/ satisfying
U � ¼ U þr/;

r � U ¼ 0;

U � r/ ¼ 0:
In this section, we propose a numerical implementation of the Hodge decomposition that guarantees L2

stability for the projection step: we sample the variables U*, U, / and $/ at the nodes of the grid and approx-
imate the gradient and the divergence operators with the second order finite differences described in Section
3.2, which we denote by G and D, respectively. For standard projection methods, one assumes that
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U � ¼ U þ G/;

DU ¼ 0:
Taking a divergence of the above equation defines / through the solution of the Laplace equation
DG/ ¼ DU �:
However, this approximation of the Laplace operators (DG) decouples the solution into even and odd nodes,
which is well known to produce spurious errors. For this reason, instead of using DG one prefers the standard
Laplace discretization. In our case, we use the approximation described in Section 3.2, which we denote by L.
As a result, we obtain e/ defined by
Le/ ¼ DU �:
Note that e/ is different from /, and U � ¼ U þ Ge/ is not a Hodge decomposition anymore at the discrete le-
vel. Since DG and L are both second order approximations of the Laplace operator, one traditionally uses e/
and defines
P apprðU �Þ ¼ U � � Ge/:

However, an alternative approach is to impose the orthogonality property between U and Ge/ in order to pre-
serve the L2 stability of the projection. We thus define
P orthðU �Þ ¼ U � � U � � Ge/
Ge/ � Ge/ Ge/;
where the inner product of two functions f and g is computed cell-wise by multiplying the average value for
f · g using the nodes of the cell with the volume of the cell.

In the both cases, DPappr and DPorth are not zero at the discrete level, but near zero within the truncation
error. This is typical of the approximate projection and is the source of the divergence free constraint being
satisfied within the truncation error (finite difference) instead of exactly (finite volume). Likewise,
P apprðU �Þ � Ge/ is approximately satisfied at the discrete level, whereas P orthðU �Þ � Ge/ ¼ 0 is satisfied exactly,
thus guaranteeing the following L2 stability for the projection step:
kU �k2
2 ¼ kP orthðU �Þk2

2 þ kU � � Ge/k2
2;

kU �k2
2 P kP orthðU �Þk2

2:
Remark:

� We show in the example section that the approximate projection does not have such a stability property.
� In the case where U Æ n 6¼ 0, the splitting U* = U + $/ is not an orthogonal decomposition as mentioned in

[7,12] so it is not clear how to extend the orthogonal projection presented above to this case. We are cur-
rently investigating this issue.

3.5. Neumann boundary condition

Let Ax = b denoted the linear system associated with the Poisson equation in the projection step. Since a
Neumann boundary condition makes the linear system singular, we consider the following augmented matrix
[15]:
A r

rT 0

� �
x

a

� �
¼

b

0

� �
;

where r denotes the right null eigenvector of A. In this case, r is the constant unit vector. Though A is singular,
the augmented matrix is not. As mentioned in [13], the preconditioning of the augmented matrix follows from
that of A: let M be a preconditioner of A, one defines
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eM ¼ M r

rT 0

� �
’

A r

rT 0

� �
:

The inverse of eM can be exactly calculated as
eM�1
f

b

� �
¼

M�1f � r�M�1f�b
r�M�1r

�M�1r
r�M�1f�b

r�M�1r

 !
: ð4Þ
In the example section, we chose M to be the symmetric Gauss–Seidel preconditioner, i.e. M = LD�1U,
where L, D and U denote the lower, diagonal and upper parts of A, respectively. Note that L, D and U

are all invertible since A is an M-matrix. The stabilized Bi-Conjugate Gradient method was very effective
in our calculations.

3.6. Projection method for the Navier–Stokes equations

Consider the momentum equation
U t þ ðU � rÞU þrp ¼ lDU þ F :
The Crank–Nicholson scheme has often been used for discretizing implicitly the viscosity term [3,17]. How-
ever, in the case where the convection term is treated with a semi-Lagrangian method, a difficulty arises:
The corresponding pressure is not defined at the grid nodes, making the projection step slightly more compli-
cated to implement in conjunction with a Crank–Nicholson scheme. The backward differentiation formula of-
fers a more convenient choice, since in this case the corresponding pressure is defined at the grid nodes [32].
The discretization of the momentum equation using a backward differentiation formula and a semi-Lagrang-
ian method for the convection term can be written as
1

Dt
3

2
Unþ1 � 2Un

d þ
1

2
U n�1

d

� �
þrpnþ1 ¼ lDUnþ1 þ F nþ1:
This equation is solved using the pressure-free three-step projection method approach of Brown et al. [6]: first,
given the velocity field Un at time tn, an intermediate velocity U* is calculated by ignoring the pressure component
1

Dt
3

2
U � � 2U n

d þ
1

2
Un�1

d

� �
¼ lLU � þ F nþ1:
Second, in order for the velocity Un+1 at time tn+1 to satisfy the incompressibility condition $ Æ Un+1 = 0 the
second step defines a potential function e/nþ1 through the solution of the following Poisson equation:
Le/nþ1 ¼ DU � ð5Þ

In the last step, the fluid velocity Un+1 at the new time step is projected to the divergence free field
U nþ1 ¼ P apprðU �Þ ¼ U � � Ge/;

or
U nþ1 ¼ P orthðU �Þ ¼ U � � U � � Ge/
Ge/ � Ge/ Ge/:
Following the approach of [6,17], the following boundary conditions for U* and /n+1 are sufficient to ensure
second order accuracy for the velocity field:
N � U �joX ¼ N � Unþ1joX;
N � G/joX ¼ 0;

T � U �joX ¼ T � Unþ1joX þ
T � Ge/n if U nþ1 ¼ P apprðU �Þ;
U��Ge/n

Ge/n�Ge/n
T � Ge/n if U nþ1 ¼ P orthðU �Þ:

8><>:

where N and T denote the normal and tangent vectors at the boundary, respectively.
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We note that the first step of the projection method computes the intermediate velocity U* by solving the
following convection-diffusion equation:
3

2
Id � DtlL

� �
U � ¼ 2U n

d �
1

2
Un�1

d þ DtF nþ1 ð6Þ
with Dirichlet boundary conditions at the domain’s boundary.
In order to solve the Poisson equations (5) and (6), we build the corresponding linear systems using the

central difference formulas for Dxx, Dyy and Dzz presented in Section 3.2. The solutions obtained with this lin-
ear system are second order accurate with second order accurate gradients as demonstrated in Min et al. [22].
The linear system obtained from the discretization of Eq. (5) with Neumann boundary conditions is singular.
Thus, in this case, we use the augmented matrix described in Section 3.5. Both linear systems are solved using
the BiCGSTAB method with the symmetric Gauss–Seidel preconditioner [25].

We also note that we use a starting routine to guess the initial value Ge/0 as described in Brown et al. [6]. All
the derivatives are computed using the formulas of Section 3.2.

4. Examples

In this section, we present numerical evidences that the proposed projection method yields second order
accuracy for the velocity field and the divergence free condition in the L1 and the L1 norms. All the examples
were tested on highly arbitrary grids to demonstrate that this scheme is applicable to non-graded adaptive
grids. In the first example, we show the instability of the approximate projection on irregular grids and the
stability of the proposed orthogonal projection. For this reason, all of our examples use the orthogonal
projection.

4.1. Stability of the orthogonal projection

In order to demonstrate the stability of the projection methods, we consider a domain X = [0,p]2 and a vec-
tor field U* = (u*,v*) with U* Æ n = 0 on oX with
u�ðx; yÞ ¼ sinðxÞ cosðyÞ þ xðp� xÞy2 y
3
� p

2

� �
;

v�ðx; yÞ ¼ � cosðxÞ sinðyÞ þ yðp� yÞx2 x
3
� p

2

� �
:

This vector field can be written as U* = U + $/, where U is a divergence-free vector field and
/ ¼ x3

3
� px2

2

� �
y3

3
� py2

2

� �
. We iteratively apply the approximate and the orthogonal projection methods on

the highly non-graded depicted in Fig. 5, i.e. we successively compute U n
appr ¼ P n

apprðU �Þ or U n
orth ¼

P n
orthðU �Þ. Fig. 6 depicts the results. In particular, note the monotonic decrease of kU n

orthkL2 as expected from
Section 3.4.

4.2. Single vortex in two spatial dimensions

Consider a domain X ¼ � p
2
; p

2

� �2
and a single vortex flow with a viscosity coefficient l = 1 and an exact

solution of
uðx; y; tÞ ¼ � cosðxÞ sinðyÞ cosðtÞ;
vðx; y; tÞ ¼ sinðxÞ cosðyÞ cosðtÞ;

pðx; y; tÞ ¼ � 1

4
cos2ðtÞðcosð2xÞ þ cosð2yÞÞ:
We use the grid depicted in Fig. 7 and impose Dirichlet boundary conditions on the domain’s boundary. We
emphasize that the difference of level between some cells and their neighbors exceeds one, demonstrating the
ability of our method to produce second order accurate solutions on arbitrary grids. The time step is chosen as
Dt = 5 · Dxs, where Dxs is the size of the finest grid cell and the final time is t = p. Table 1 demonstrates the



Fig. 5. Highly non-graded grid used in example 4.1.

Fig. 6. Left: kUn
orth � Uk1 (solid) and kUn

appr � Uk1 (dotted). Right: kUn
orthk2 (solid) and kUn

apprk2 (dotted). The finest resolutions of the

quadtrees are 642, 1282, 2562 and 5122.

Fig. 7. Arbitrarily generated quadtree (left) and streamlines of the numerical solution (right) for example 4.2.
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Table 1
Accuracy of the x-component of velocity and accuracy of the divergence free condition in the L2 and L1 norms for example 4.2

Grid resolution (min–max) x-Component of U Divergence of U

L2 Rate L1 Rate L2 Rate L1 Rate

42–322 6.26E�3 6.11E�2 1.78E�2 2.07E�1
82–642 1.87E�3 1.73 1.49E�2 2.03 4.31E�3 2.05 5.08E�2 2.02
162–1282 3.38E�4 2.47 2.47E�3 2.59 8.72E�4 2.30 1.16E�2 2.13
322–2562 6.46E�5 2.38 4.42E�4 2.48 1.77E�4 2.29 3.36E�3 1.78
642–5122 1.59E�5 2.01 1.74E�4 1.34 4.14E�5 2.10 9.24E�4 1.86
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second order accuracy of the x-component of the velocity field as well as the accuracy of the divergence free
condition in the L2 and L1 norms.

4.3. Driven cavity

We test our Navier–Stokes solver on the well-known driven cavity problem of Ghia et al. [11]: Consider a
domain X = [0,1]2, with the top wall moving with unit velocity, We impose no-slip boundary conditions on the
Fig. 8. Adaptive grids for the driven cavity example. From top to bottom and left to right: t = 3.12, 7.50, 13.75 and 37.50. The coarsest
grid has level 6, and the finest has level 8.
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four walls. In this example, we take a Reynolds number Re = 1000, i.e. the viscosity coefficient l = 1/1000.
The criterion for mesh refinement we use is that proposed in [24], i.e. a cell C is refined whenever
0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

Fig. 9.
and a
depicts
obtain
minðDx;DyÞmaxx2Ckr � Uk2

maxx2XkUk2

> s; ð7Þ
where s is a chosen threshold taken to be 0.04. More precisely, consider a grid structure Gn at time tn on which
the velocity field is updated from Un to Un+1. The grid Gn+1 at tn+1 is constructed in the following way: first, we
compute $ · Un+1 at every nodes of Gn using the second order central difference formulas of Section 3.2. Sec-
ond, starting from the root of Gn+1 split the cell if (7) is satisfied using maxx2Ci$ · Un+1i2 = maxvi
($ · Un+1)(v)i2, where v is a node of Gn and v 2 C and maxx2XiUi2 is computed by taking the maximum of
iUi2 over all nodes of Gn. Finally, Un+1 is defined on the new grid Gn+1 from the values of Un+1 on Gn using
the quadratic interpolation described in Section 3.3.

Fig. 8 depict the evolution of the streamlines and of the adaptive grid until steady state, while Fig. 9 dem-
onstrates the convergence of the velocity at steady state to the benchmark solution of [11].

4.4. Three spatial dimensions

Consider a domain X ¼ ½� p
2
; p

2
�3 and a flow with viscosity l = 1 and with an exact solution defined by
uðx; y; z; tÞ ¼ �2 cosðtÞ cosðxÞ sinðyÞ sinðzÞ;
vðx; y; z; tÞ ¼ cosðtÞ sinðxÞ cosðyÞ sinðzÞ;
wðx; y; z; tÞ ¼ cosðtÞ sinðxÞ sinðyÞ cosðzÞ;

pðx; y; z; tÞ ¼ 1

4
cos2ðtÞð2 cosð2xÞ þ cosð2yÞ þ cosð2zÞÞ:
The time step is chosen as Dt = 5 · Dxs, where Dxs is the size of the finest grid cell and we run the simulation
up to a final time of t = p. Fig. 10 depicts the grid used. In particular, the level difference between some cells
and their neighbors is larger than one, illustrating the ability of our method to retain second order accuracy on
non-graded adaptive grids. Table 2 demonstrates the second order accuracy of the x-component of the veloc-
ity field as well as the accuracy of the divergence free condition in the L2 and L1 norms.
.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2
u

 

x and y component of the velocity field in the driven cavity example of Ghia et al. [11]. The domain is [0,1] and we take Re = 1000
time step of Dt = 2Dxs, where Dxs is the size of the smallest grid cell. The symbols are the experiment results of [11], the dotted line

the numerical results obtained with an adaptive quadtree with level ranging from 6 to 8, the solid line depicts the numerical results
ed with an adaptive quadtree with level ranging from 7 to 9.



Fig. 10. From top to bottom and from left to right: Arbitrarily generated three-dimensional grid used in example 4.4, its front view, side
view and top view. In particular, note that the difference of level between adjacent grid cells can exceed one.

Table 2
Accuracy of the x-component of velocity and accuracy of the divergence free condition in the L2 and L1 norms for example 4.4

Grid resolution (min–max) x-Component of U Divergence of U

L2 Rate L1 Rate L2 Rate L1 Rate

43–323 9.77E�3 6.52E�2 4.47E�2 3.45E�1
83–643 3.19E�3 1.61 1.82E�2 1.84 9.65E�3 2.21 1.24E�1 1.47
163–1283 5.85E�4 2.44 3.66E�3 2.31 2.00E�3 2.26 4.70E�2 1.40
323–2563 1.23E�4 2.24 7.02E�4 2.38 3.27E�4 2.61 1.39E�2 1.75
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4.5. Refinement test

As pointed out in [1], one important issue of adaptive grids is whether a refinement of one region improves
the accuracy of the region and not worsen the accuracy of other regions. As noted in [1,24], in some cases, a
refinement of one region not only worsen the other regions, but also the region itself. Here we test this issue for
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the fluid solver presented in this article. To prevent the diffusion effect on error term, we consider an inviscid
solution from [1]
Table
Conve

Grid r

322

642

1282

322–64
642–12
1282–2

322–12
642–25
1282–5

Table
Conve

Grid r

322

642

1282

322–64
642–12
1282–2

322–12
642–25
1282–5

Table
Conve

Grid r

162–64
322–12
642–25
1282–5
u ¼ 1� 2 cosð2pðx� tÞÞ sinð2pðy � tÞÞ;
v ¼ 1� 2 sinð2pðx� tÞÞ cosð2pðy � tÞÞ;
p ¼ � cosð4pðx� tÞÞ � cosð4pðy � tÞÞ:
Consider a computational domain of [0,1]2 with periodic boundary condition. A small square with dimen-
sions 1/4 · 1/4 and bottom left corner located at (1/4, 1/4) is patched with a grid with finest resolution, while
the rest of the domain is patched with a grid with coarser resolution. We denote by r the level difference
between the two regions. The calculations are run until t = 0.5 with CFL numbers of 0.75 for Tables 3 and
2 for Table 4. The results in the two tables demonstrate that the fluid solver proposed in this article improves
the accuracy in the small square region, as well as the other regions. Our results in Table 3 show that the error
are larger than those obtained in [1,24], but decrease with the refinement, while the errors in [1,24] increase.
3
rgence rate for example 4.5 with CFL = 0.75

esolution (min–max) x-Component of U in patch x-Component of U in X

L2 Rate L1 Rate L2 Rate L1 Rate

4.05E�2 7.40E�2 5.51E�2 1.24E�1
9.63E�3 2.07 1.64E�2 2.16 1.37E�2 2.00 3.09E�2 2.00
2.34E�3 2.04 4.17E�3 1.98 3.37E�3 2.02 7.62E�3 2.01

2 2.64E�2 5.31E�2 3.97E�2 7.80E�2
82 6.14E�3 2.10 1.30E�2 2.02 9.25E�3 2.10 1.72E�2 2.17
562 1.46E�3 2.07 3.33E�3 1.97 2.18E�3 2.08 3.89E�3 2.14

82 2.09E�2 4.48E�2 3.13E�2 6.04E�2
62 5.18E�3 2.01 1.27E�2 1.81 7.75E�3 2.01 1.40E�2 2.10
122 1.27E�3 2.02 3.39E�3 1.90 1.84E�3 2.06 3.47E�3 2.01

4
rgence rate for example 4.5 with CFL = 2

esolution (min–max) x-Component of U in patch x-Component of U in X

L2 Rate L1 Rate L2 Rate L1 Rate

1.93E�1 4.36E�1 2.02E�1 4.60E�1
4.74E�2 2.02 1.10E�1 1.97 5.60E�2 1.85 1.18E�1 1.95
1.16E�2 2.02 2.79E�2 1.98 1.47E�2 1.92 3.16E�2 1.95

2 5.10E�2 1.05E�1 6.12E�2 1.36E�1
82 1.31E�2 1.95 2.75E�2 1.93 1.66E�2 1.88 3.83E�2 1.82
562 3.22E�3 2.03 6.64E�3 2.05 4.15E�3 2.00 9.70E�3 1.98

82 3.07E�2 6.23E�2 4.71E�2 9.98E�2
62 7.17E�3 2.09 1.50E�2 2.05 1.06E�2 2.14 2.15E�2 2.21
122 1.74E�3 2.04 3.85E�3 1.96 2.51E�3 2.08 4.88E�3 2.14

5
rgence rate for example 4.6

esolution (min–max) x-Component of U

L2 Rate L1 Rate

2 1.17E�2 1.68E 0
82 5.31E�2 1.14 9.68E�1 0.79
62 1.79E�2 1.57 3.40E�1 1.51
122 4.38E�3 2.03 8.17E�2 2.05



Fig. 11. Contour plots of the vorticity for example 4.6. From top to bottom and left to right: t = 0, 0.043, 0.096, 0.140, 0.184 and 0.219.
The coarsest grid has level 7, and the finest has level 10. The lines represent the boundaries between levels of refinement.
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4.6. Adaptive refinement

Here we consider the test problem proposed in [1], which requires an adaptive grid. Initially the velocity in
the unit square is given by the vorticity produced by the sum of four vortices. The vortices are centered at
(0.5,0.5), (0.59, 0.5), ð0:455; 0:5� 0:045

ffiffiffi
3
p
Þ, with magnitudes �150, 50, 50 and 50, respectively. Each vortex

has a profile of 1
2
ð1þ tanhð100ð0:03� rÞÞÞ, where r is the distance to the center. The velocity is advected with

viscosity 0.0001 and without a forcing term. The calculations are run until t = 0.25 with a CFL number of 0.9.
Since the vorticity decays fast away from the four vortices, we assume the no-slip boundary condition for the
velocity field. The refinement criteria is the same as that used for the driven cavity problem of Section 4.3 with
s = 0.004. Since the exact solution is unknown, a numerical solution calculated on 10242 grid is used as the
exact solution in the error analysis. Table 5 gives the accuracy results and Fig. 11 depicts the evolution of
the vortices as well as the boundaries where the grid changes size. We find errors that are slightly larger than
the errors reported in [1,24]. On the other hand, the time step we take is about three times larger.

5. Conclusions

We have presented an unconditionally stable second order accurate projection method for the incompress-
ible Navier–Stokes equations on non-graded adaptive Cartesian grids. Quadtree and octree data structures are
used to provide an optimal representation of the mesh. We use the supra-convergent Poisson solver of Min
et al. [22] to account for the incompressibility condition, a second order accurate semi-Lagrangian method
to update the momentum equation, a stiffly stable backward difference scheme to treat the diffusion term
and a new method that guarantees the stability of the projection step on highly non-graded grids. All the vari-
ables are sampled at the nodes, producing a scheme that is straightforward to implement. Two- and three-
dimensional examples have been presented to demonstrate second order accuracy for the velocity field and
the divergence free condition in the L1 and the L1 norms. Future work will seek to extend the present
approach to the case where U Æ n 6¼ 0 on oX.
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